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The leading-edge receptivity to acoustic waves of two-dimensional bodies is inves-
tigated using a spatial solution of the Navier–Stokes equations in vorticity/stream
function form in general curvilinear coordinates. The free stream is composed of a
uniform flow with a superposed periodic velocity fluctuation of small amplitude. The
method follows that of Haddad & Corke (1998), in which the solution for the basic
flow and the linearized perturbation flow are solved separately. The initial motivation
for the work comes from past physical experiments for flat plates with elliptic leading
edges, which indicated narrow frequency bands of higher neutral-curve Branch I
receptivity. We investigate the same conditions in our simulations, as well as on a
parabolic leading edge. The results document the importance of the leading edge,
junction between the ellipse and flat plate, and pressure gradient to the receptivity
coefficient at Branch I. Comparisons to the past experiments and other numerical
simulations showed the influence of the elliptic leading-edge/flat-plate joint as an ad-
ditional site of receptivity which, along with the leading edge, provides a wavelength
selection mechanism which favours certain frequencies through linear superposition.

1. Introduction
Transition from laminar to turbulent flow in a boundary layer is of fundamental

and practical importance, and as a result has been widely studied. Receptivity is the
first stage of the transition process. The term receptivity was first used by Morkovin
(1969) to describe the mechanism by which energy from the free stream enters and
excites instability waves inside the boundary layer. In two-dimensional boundary
layers, the linear instability is referred to as Tollmien–Schlichting (T-S) waves. For
incompressible flows subject to free stream acoustic disturbances, the mechanism
behind the receptivity process is one of a wavelength transformation between the
long-wave acoustic disturbances and the shorter wavelength T-S modes. Goldstein
(1983) was the first to point out that this process can take place in regions of
strongly non-parallel mean flow. Such sites of receptivity include leading edges, and
discontinuities in surface curvature, such as produced by local bumps or joints.
General reviews on this topic have been made by Goldstein & Hultgren (1989), and
Kerschen (1990).

Acoustic disturbances that enter the boundary layer by the receptivity process
can excite different unsteady modes. These include a Stokes wave, forced (non-Orr–
Sommerfeld) modes and T-S modes of both discrete and continuous spectrum types.
These will grow or decay at different rates so that one may be more dominant
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than another at a given downstream location. For leading-edge receptivity, the linear
instability waves excited there are generally damped until they convect beyond the
location of the lower neutral-growth curve (Branch I). Their amplitude at Branch
I is dependent on the initial amplitude of the acoustic disturbance, the pressure
gradient which governs the mean flow, and the frequency which determines the linear
instability characteristics. If other sites of receptivity are present between the leading
edge and Branch I, these will affect the instability amplitude measured at Branch I.
Such observations make it essential to carefully define the receptivity coefficient.

In general, the receptivity coefficient is defined as the ratio of the instability wave
(T-S) amplitude, at some location in the boundary layer, to the acoustic amplitude
in the free stream. Leehey, Gedney & Her (1984) used the maximum amplitude in
the boundary layer, which for a linear mode occurs at the location of the upper
neutral-growth curve (Branch II). Murdock (1980), Saric, Wei & Rasmussen (1995),
and Saric & White (1998) preferred to use the location of Branch I. Haddad & Corke
(1998) advocated using the leading edge because this eliminated the other factors
which influence the amplitude when measured downstream.

Historically, two basic body shapes have been used to study receptivity. Murdock
(1980), Haddad & Corke (1998) and Hammerton & Kerschen (1992, 1996) considered
parabolic bodies. In this case the only site of receptivity was at the leading edge,
and the pressure gradient is everywhere favourable. In the first two references, the
receptivity coefficient was determined by numerically solving the unsteady Navier–
Stokes (N-S) equations. Hammerton & Kerschen (1992, 1996) determined it using
asymptotic methods.

The other shape which has been frequently used is an elliptic leading edge on
a finite-thickness flat plate. This shape has more practical relevance, and has been
the subject of physical experiments by Shapiro (1977), Saric & Rasmussen (1992),
Saric et al. (1995) and Saric & White (1998). The results of these motivated the N-S
calculations of Lin, Reed & Saric (1990) and Fuciarelli (1997). The elliptic leading
edge has an adverse pressure gradient, and two sites of receptivity, one at the leading
edge and the other at the point where it joins the flat plate. To minimize the effect
of the joint, Saric et al. (1995) used a ‘modified super ellipse’ (MSE). This used a
variable exponent for the ellipse long axis to give zero curvature at the joint location.

Haddad & Corke (1998) and Hammerton & Kerschen (1992, 1996, 1997) found
that the leading-edge receptivity coefficient increased as the leading-edge radius de-
creased, with the maximum receptivity occurring for an infinitely thin flat plate. When
the receptivity values of Saric et al. (1995) and Fuciarelli (1997) were extrapolated
upstream from Branch I to the leading edge, good quantitative agreement was found
with the values of Haddad & Corke (1998).

Based on the analysis of Hammerton & Kerschen (1992, 1996), the receptivity
coefficient determined at the leading edge varies with frequency through a Strouhal
number based on the free-stream speed and nose radius. The dependence of the
receptivity coefficient defined at Branch I on frequency will also reflect the frequency-
dependent stability characteristics of the T-S waves. Linear theory predicts a smooth
variation in the amplification rate so that the integrated (N-factor) amplitude should
vary smoothly with frequency. A departure from this could occur when more than
one site of receptivity exists at a streamwise location which is upstream of Branch I,
for example at the leading edge and joint of the elliptic leading edge of a flat plate.
In this case one can conceive of a mechanism of linear wave addition or cancellation
which could produce unexpected amplitude variations with frequency.

This discussion leads to a series of experiments performed by Saric et al. (1995) and
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Figure 1. An illustration of the physical problem of interest.

Saric & White (1998). These examined the Branch I receptivity coefficient as a function
of frequency for elliptic leading edges. The leading edges consisted of modified super
ellipses (MSE) with aspect ratios of 20 : 1 and 40 : 1. In the first experiment, long-
time-duration single-frequency acoustic disturbances were introduced inside the wind
tunnel test section. The response to this excitation in terms of the T-S amplitude at
Branch II was then measured, and used to infer the amplitude at Branch I based
on linear stability theory growth rates. The receptivity coefficient was then defined as
the T-S wave amplitude at Branch I divided by the acoustic wave amplitude. When
they swept through different frequencies, they observed relatively narrow bands of
frequencies in which the receptivity coefficient was larger. In addition, the interval of
the bands was predictable based on wavelength arguments. Since that experiment, a
number of possible explanations for this behaviour have been discussed: the formation
of standing waves inside the tunnel test section, oblique angled sound waves which
according to theory (Kerschen 1990; Hammerton & Kerschen 1996) have higher
leading-edge receptivity, and nonlinear effects.

The explanation for this behaviour became the motivation for the second experi-
ment, by Saric & White (1998). In this case, the sound source was excited with discrete
frequencies in short-time-duration wave ‘packets’. The reason for this was the belief
that the frequency bands observed in the earlier work were the result of an interaction
between the wake instability of the flat plate and the leading-edge stagnation line.
That is, the acoustic source was thought to excite the wake instability, which would
produce an unsteady pressure oscillation at the leading edge, and thereby provide ex-
tra excitation to the T-S mode (see figure 1). The use of the acoustic wave packets was
designed to utilize the slower convection speed of the T-S wave (' 0.4U∞) compared
to the acoustic-speed response of the plate-wake disturbance in order to separate out
the two effects. The results of this experiment still revealed some frequency focusing
of the Branch I receptivity, although the frequency width was larger.

1.1. Objectives

These experiments were a principle motivation for the present work, which also builds
on the past work of Haddad (1995) and Haddad & Corke (1998). The objectives were
then to numerically model the flow over elliptic leading edges matched to flat plates
in order to directly compare to the results of the previous experiments by Saric et
al. (1995) and Saric & White (1998). Here, the focus is on possible mechanisms that
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could lead to the frequency focusing of higher Branch I receptivity. We selectively
examine the roles of the leading edge, pressure gradient and junction on the receptivity
coefficient determined at Branch I. For this, the effect of the junction is isolated by
comparing a modified super ellipse and regular ellipse with the same aspect ratio and
thickness.

We use the method of Haddad (1995) and Haddad & Corke (1998) whereby
the basic and perturbation flows are solved separately in the spatial domain. In
their cases for parabolic bodies, an analytic parabolic coordinate transformation was
performed prior to the numerical formulation. For elliptic leading edges on flat plates,
a formulation in general curvilinear coordinates is required.

We check the numerical model by first solving the flow over the parabolic body
for the conditions of Haddad & Corke (1998). This is also checked against other
available results in the literature, such as those of Davis (1972). We also check the
numerical model for the elliptic leading edges against the available results in the
literature, such as the experimental results of Saric et al. (1995), Saric & White (1998),
and numerical results of Fuciarelli, Reed & Lyttle (1998). The comparisons include
pressure gradients, the locations of Branch II, linear mode eigenfunctions, and the
Branch I receptivity coefficients.

2. Governing equations
The acoustic receptivity of two-dimensional bodies in an incompressible flow was

investigated by the numerical solution of the incompressible Navier–Stokes equations.
By taking advantage of the two-dimensionality of the problem, the governing equa-
tions consist of two equations for the vorticity, ω, and stream-function, ψ, fields, and
one equation for the pressure, p (or pressure coefficient, Cp), field. The non-dimensional
form of the governing equations is

ωt + ψyωx − ψxωy =
1

RL
(ωxx + ωyy), (1a)

ω = − 1√
RL

(ψxx + ψyy), (1b)

∇2Cp = 2[ψxxψyy − (ψxy)
2], (1c)

where subscripts denote partial differentiation, and

RL =
U∞L
ν

(2)

with L being a characteristic length which in this case is the length of the body.
The non-dimensional form of the governing equations has the advantage of show-

ing explicitly the characteristic parameters of the flow such as Reynolds number.
Moreover, the variables are normalized so that their values are restricted to certain
limits such as 0 and 1. The form of non-dimensionalization which was used to obtain
is (1)

x =
x∗

L
, y =

y∗

L
, t =

t∗U∞
L

, ψ =
ψ∗

U∞L
, ω =

ω∗√
U3∞/νL

, Cp =
p∗ − p∞
ρU2∞

. (3)

The dimensionless governing equations were transformed from the physical Carte-
sian (x, y) coordinate into a general curvilinear coordinate (ξ, η) to make them more
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suitable for a numerical formulation:

U ξ + V η = S (4)

where U , V and S represent three different formulas corresponding to the respective
equations 1(a)–1(c):

U =
1

J

 R−1
L (A1ωξ + A2ωη)

R
−1/2
L (A1ψξ + A2ψη)

A1Cpξ + A2Cpη

 , (5a)

V =
1

J

 R−1
L (A2ωξ + A3ωη)

R
−1/2
L (A2ψξ + A3ψη)

A2Cpξ + A3Cpη

 , (5b)

S =
1

J

 ωt + J(ψηωξ − ψξωη)
−ω

2J2[ψξξψηη − (ψηξ)
2]

 . (5c)

The corresponding matrices and the Jacobian are collectively given as

A1 = ξ2
x + ξ2

y , A2 = ξxηx − ξyηy, A3 = η2
x + η2

y , J = ξxηy − ξyηx. (6)

Equation (4) represents the three governing equations for vorticity, stream func-
tion and pressure in the general coordinates (ξ, η). The equations for vorticity and
streamfunction can be solved independently of the pressure. If only the pressure at
the surface of the body is required, a simpler equation is obtained by applying the
streamwise momentum equation to the fluid adjacent to the surface:

[CPξ ]wall = − 1√
RL

[ωη]wall . (7)

3. Perturbation of the governing equations
Following the method of Haddad & Corke (1998), the free stream is assumed to

be composed of a uniform flow with a superposed uniform oscillation of frequency σ
and amplitude ε. Here, ε is considered to be sufficiently small to allow linearization
of the perturbation equations. In the curvilinear coordinates, the free-stream stream
function is then expressed as

ψ∞ = (1 + εeiσt)ξη. (8)

The perturbation equations are obtained by linearizing the equations in § 2 about
the mean flow. The dependent variables are the superposition of the basic (mean)
flow (Ψ and Ω) and the perturbation flow (ψ̃ and ω̃) variables given in normal mode
form as

ψ(ξ, η, t) = Ψ (ξ, η) + εeiσtψ̃(ξ, η), (9)

ω(ξ, η, t) = Ω(ξ, η) + εeiσtω̃(ξ, η). (10)

Substituting these equations into the governing equations, and equating terms of
equal powers of ε, leads to the governing equations for the basic and perturbation
flow fields.
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The basic flow (zero-order terms in ε) is governed by

U ξ + V η − S = 0 (11)

where in this case

U =
1

J

[ −JΩΨη + R−1
L (A1Ωξ + A2Ωη)

R
−1/2
L (A1Ψξ + A2Ψη)

]
, (12a)

V =
1

J

[
JΩΨξ + R−1

L (A2Ωξ + A3Ωη)

R
−1/2
L (A2Ψξ + A3Ψη)

]
, (12b)

S =
1

J

[
0

−Ω
]
, (12c)

and A1, A2, A3 and J are the same as in (6).
The linearized perturbation flow (first-order terms in ε) is governed by

U ξ + V η = S (13)

where in this case

U =
1

J

[
R−1
L (A1ω̃ξ + A2ω̃η)

R
−1/2
L (A1ψ̃ξ + A2ψ̃η)

]
, (14a)

V =
1

J

[
R−1
L (A2ω̃ξ + A3ω̃η)

R
−1/2
L (A2ψ̃ξ + A3ψ̃η)

]
, (14b)

S =
1

J

[
iσω̃ + J(Ωξψ̃η +Ψηω̃ξ − Ωηψ̃ξ −Ψξω̃η)

−ω̃
]
, (14c)

and again, A1, A2, A3 and J are the same as in (6).

3.1. Boundary conditions

Basic flow On the surface of the body, the mean flow boundary conditions are the
standard no-slip and no-penetration ones. In the curvilinear coordinate frame, these
are specified by

Ψ = 0, Ψη = 0, and Ω = A3Ψηη/
√
RL. (15)

Away from the body, in the free stream, the flow is uniform. This is given as

Ψη = ξx/J. (16a)

Similarly, the free stream is vortex free so that

Ω = 0. (16b)

Perturbation flow On the surface of the body, the no-slip, no-penetration condition
is specified by

ψ̃ = 0, ψ̃η = 0, and ω̃ = A3ψ̃ηη/
√
RL. (17)

Away from the body, in the free stream,

ψ̃η = ξx/J and ω̃ = 0. (18)
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4. Numerical formulation
For the solution of the nonlinear basic flow equations, a pseudo-time marching,

Beam–Warming (1978) implicit approximated factorization scheme was used. This
scheme belongs to the class of alternating-direction implicit schemes (ADI), such as
was used by Davis (1972) for the solution of the mean flow over parabolic bodies. In
the numerical formulation, all the derivatives were approximated using a second-order
finite differences. Away from the boundaries, central differencing was used.

On the body surface, the no-penetration condition was imposed by setting the
stream function equal to zero. The no-slip condition was imposed implicitly in the
computation of the vorticity given in (15). At the free-stream boundary, the free-
stream condition was imposed by setting the undisturbed uniform velocity equal to
one.

The method of defining the outflow boundary condition follows that of Haddad
& Corke (1998). The properties at the outflow grid points are obtained together with
the interior points by evaluating the streamwise derivatives of the convection terms
with one-sided finite differences, and neglecting the streamwise elliptic terms of the
governing equations. In order to avoid reflections that would alter the flow upstream,
a buffer zone was specified in which the elliptic terms in the governing equations were
multiplied by a weighting function, s, given by

s(i) =

[
1 + tanh (arg)

2

]
where arg = 4

[
1− 2(i− ibuf)

Imax − ibuf
]
. (19)

Here, i is the numerical index in the streamwise direction, ibuf is the index at the
beginning of the buffer zone, and Imax is the total number of streamwise points. This
weighting function ranges from 1 to 0, and thereby gradually suppresses the elliptic
terms at the start of the buffer zone to the outflow boundary. The length of the buffer
zone is an important parameter, and was set to be equal to four times the wavelength
of the expected instability wave (Haddad & Corke 1998).

The linear equations governing the perturbation flow were solved by Gauss elimi-
nation using standard linpack routines. The boundary conditions on the surface were
treated similarly to the mean flow. The outflow boundary condition was also handled
like the basic flow using an identical buffer zone, with the weighting function given
in (19).

The same computational grid was used for both the basic and perturbation flows.
A stretching transformation was used in the streamwise ξ- and transverse η-directions
in order to concentrate grid points close to the leading edge and surface of the body.
With the stretching, care was taken to ensure that at least 10 grid points per instability
wavelength would exist everywhere along the body.

The maximum height of the computational grid above the body surface corre-
sponded to ten times the maximum thickness of the boundary layer, as recommended
by Haddad (1995). The number of grid points in the ξ- and η-directions was 999 and
36, respectively.

The proper implementation of a numerical code was tested on parabolic bodies,
where comparisons could be made to the published results of Davis (1972) and
Haddad & Corke (1998), among others. In addition, that problem has the advantage
of having an analytic (Blasius) solution in the limit as the nose radius of the parabola
goes to zero (infinitely thin flat plate). The results of these tests showed excellent
agreement both in terms of the mean flow, and instability mode amplitude and
wavelength (see Wanderley 1998).
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Figure 2. Curvature distributions for the three types of elliptic leading edges investigated.

Case RL Rb F × 106 a/b

Present work 1 1.00× 106 2400 30–120 20 : 1 MSE
Present work 2 1.00× 106 2400 30–120 40 : 1 MSE
Present work 3 1.00× 106 2400 30–120 20 : 1 Reg.E
Saric & White (1998) 1.90× 106 2269 82–99 20 : 1 MSE
Fuciarelli et al. (1998) — 2400 82–86 20 : 1 MSE

Table 1. Physical parameters with plate half-thickness, b = 2.4× 10−3.

5. Results
As stated in § 1.1, the focus of this work is on the acoustic receptivity of elliptic

leading edges attached to finite-thickness flat plates. For this, three bodies were
investigated: two modified super ellipses (MSE) with aspect ratios of 20 : 1 and 40 : 1,
and one regular ellipse with an aspect ratio of 20 : 1. The first two were the subject of
the experiments by Saric et al. (1995) and Saric & White (1998), which motivated our
investigation. The comparison to a 20 : 1 regular ellipse is meant to isolate the effect
of the junction to the flat plate over the other effects due to the leading edge and
pressure gradient on the Branch I receptivity coefficient. The conditions of these three
cases, as well as that of another numerical investigation by Fuciarelli et al. (1998),
are listed in table 1.

The shape of the MSE is defined by

y = b

√
1−

(a− x
a

)m
with m = 2 +

(x
a

)2

. (20)

For a regular ellipse, m = 2.
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Figure 3. Surface vorticity distribution over flat plates with elliptic leading edges, and comparison
to Blasius; RL = 1.00× 106, and Rb = 2400.

With acoustic receptivity, as was first pointed out by Goldstein & Hultgren (1987),
local changes in curvature are important. Figure 2 documents the curvature for the
three leading edges examined in this study. The use of the MSE in the experiments
was intended to give a zero curvature at the junction to the flat plate. Although
the shape accomplishes this, it still exhibits a rapid variation just upstream of the
junction.

5.1. Basic flow

The vorticity distribution on the surface of the three bodies is shown in figure 3. Also
included is the vorticity distribution for a Blasius layer. We observe that distributions
for the ellipses approach Blasius ones further downstream, away from the leading
edge. Also, the vorticity level near the leading edge is larger for the higher (40 : 1)
aspect ratio ellipse, which reflects its smaller leading-edge nose radius. Finally, we
observe no difference between the vorticity distributions of the 20 : 1 MSE and regular
ellipses.

The distribution of the surface pressure coefficient for the three bodies is shown
in figure 4. These show a local region of adverse pressure gradient near the leading
edge, which was not present for the parabolic body of Haddad & Corke (1998). The
pressure distribution over the 40 : 1 MSE obtained in the experiment of Saric et al.
(1995) is shown by the symbols in the figure. This shows a good agreement between
the numerical and experimental results. In addition, both the 20 : 1 MSE and regular
ellipses have nearly identical pressure distributions. This is important in trying to
isolate the effect of the junction on the Branch I receptivity coefficient, which will be
presented in the next section.

Other documentation of the mean flow presented by Wanderley (1998) included
comparisons of the mean velocity profile over the flat-plate portion of the body with
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Figure 4. Surface pressure distribution over flat plates with elliptic leading edges, and comparison
to Saric et al. (1995) for 20 : 1 MSE; RL = 1.00× 106, and Rb = 2400.

different aspect-ratio leading edges. These showed excellent agreement with a Blasius
profile.

5.2. Perturbation flow

In this section, the results of the investigation of the perturbation flow for the three
leading edge cases are presented. For this a relatively large range and number of
acoustic disturbance frequencies were examined. These totalled 180 different non-
dimensional frequencies, F = 2πfν/U2∞, in the range from 30 × 10−6 to 120 × 10−6.
This range of frequencies is illustrated with respect to the Blasius linear stability

neutral curve by the pair of horizontal lines in figure 5. The length, s, used in Re
1/2
s

is the arclength along the body surface.
In presenting the perturbation flow, the contribution of the Stokes wave is always

subtracted from the total perturbation velocity. This involved an independent solution
of the governing equations which had been modified to eliminate the inertial terms.
The numerical accuracy had been tested by comparing to the analytic Stokes solution.
The details of this are presented by Wanderley (1998).

Figure 6 shows the wall-normal distribution of the streamwise velocity perturbation
amplitude at the streamwise location of Branch II of the neutral curve, for the 20 : 1
MSE leading edge at RL = 1.44 × 106, b = 1.67 × 10−3 and Rb = 2400. Note that in
this case, the conditions are different from those given in table 1 to allow a direct
comparison to the experimental results of Saric et al. (1995). These are shown as
the open symbols in the figure. Also shown by filled symbols is the linear theory
T-S eigenfunction. Both the numerical and experimental results were obtained for a
non-dimensional frequency of F = 54× 10−6. With this comparison, we observe good
agreement between linear theory and the present numerical results. The experimental
results also compare very well except for a small deviation near the edge of the
boundary layer.

A further comparison between our numerical results, linear theory and the ex-
perimental results is shown in figure 7. This shows the Reynolds number value at
the upper branch (II) of the neutral stability curve for a range of frequencies of
35×10−6 6 F 6 60×10−6. These were for a 20 : 1 MSE leading edge with a thickness
of b = 5.0×10−3 and Rb = 20 000, to match other experimental conditions of Saric et
al. (1995). The results of the experiment are shown by the closed symbols. The open
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Figure 5. Neutral stability curve for the Blasius boundary layer showing the range of
dimensionless frequencies used for the parabola and elliptic leading edges.

symbols in the figure correspond to the linear theory predictions for a Blasius layer.
Here we find good agreement between the experimental and the numerical results. It
might be expected that both of these would differ from the linear theory prediction
since the flow only approaches Blasius far from the leading edge. Since the location
of Branch II is one of the most sensitive indicators of the stability characteristics of
the basic flow, the close correspondence of our numerical results with the experiment
is significant.

Figure 8 shows representative amplitude distributions in the streamwise direction
of the perturbation velocity for the three bodies at F = 80.0×10−6. These correspond
to the height above the wall where the T-S amplitude is near a maximum. The long
vertical lines denote the amplification region in each case. The junction between the
ellipse and the flat plate in each case is denoted by the short vertical line near the
x-axis of each plot.

We define the receptivity as the ratio of the maximum T-S amplitude at an
x-location, to the amplitude of the free-stream disturbance, which is denoted as
Kx = |(u′TS )|/|(u′∞)|. One of the advantages of this definition is that an explicit
amplitude for the free-stream disturbance is not required. Rather, we only require
that the free-stream amplitude be small enough for linearization. In our formulation,
the amplitude obtained from the numerical results is u′/u′∞. Therefore if the only
component of the fluctuations is due to T-S waves, the amplitude we measure is
u′TS/u′∞ and so the amplitudes measured at any x-location such as in the plots in
figure 8, are identically Kx. For comparison to the results of Saric et al. (1995), and
Saric & White (1998), we chose x to be at the locations of Branch I so that we report
KI .

Figure 9 shows the effect of the different frequencies on KI for the three different
elliptic leading edges, at the conditions given in table 1. The points in the figure
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Figure 6. Wall-normal distribution of the streamwise velocity amplitude of the instability wave at
Branch II over a flat plate with a 20 : 1 MSE leading edge, and comparison to the experimental
results of Saric et al. (1995), and linear T-S eigenfunction; RL = 1.44×106, F = 54×10−6, Rb = 2400.

correspond to the values at discrete frequencies. Note that these represent every sixth
frequency increment. In subsequent figures these will be represented by the smooth
curve which is drawn through the points in this figure.

We can observe a number of features about the receptivity coefficients in figure
9. The first is that there is an oscillation in the receptivity coefficient with changing
disturbance frequency. This is most evident for the 20 : 1 regular ellipse and the
40 : 1 MSE. The period of the oscillation is also shorter for the larger-aspect-ratio
leading edge. The longer period of oscillation for the shorter-aspect-ratio cases, and a
downstream shift in the location of the maxima did not allow us to capture the period
minima which is expected for the 20 : 1 MSE within the frequency range examined.
In addition to these interesting observations, we also find that the largest receptivity
coefficient occurs for the lower-aspect-ratio leading edges. This might appear to
conflict with the previous results of Haddad & Corke (1998) and Hammerton &
Kerschen (1992) which indicate that the smaller nose radius of the 40 : 1 MSE should
have the highest (leading edge) receptivity. In subsequent figures we will examine
these features and give a physical explanation for this behaviour.

As discussed earlier, with these bodies the amplitude of the T-S waves at Branch I
is dependent on the receptivity at the leading edge and at the junction with the flat
plate, and on the pressure gradient which defines the mean flow near the leading edge.
Figure 10 documents the leading-edge receptivity, KLE , for the three cases. This shows
the T-S amplitude on a log scale, as a function of x-location close to the leading
edge. The amplitude at the leading edge (x = 0) is expected to decay exponentially
until reaching Branch I. On a log scale this should follow a straight line. Following
the method of Haddad & Corke (1998), a straight line was fitted to the points closest
to the leading edge in order to extrapolate to the values at x = 0. The result shows
that as expected, KLE is larger for the sharper, 40 : 1 leading edge. The value also
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Figure 7. Upper branch of the neutral growth curve for a flat plate with a 20 : 1 MSE leading edge,
and comparison to the experimental results of Saric et al. (1995), and linear theory for a Blasius
layer.

compares well to KLE = 0.6 that was obtained for the parabola with a comparable
nose-radius Strouhal number by Haddad & Corke (1998). It should be pointed out
that the higher frequency of F = 230× 10−6 used by Haddad & Corke (1998), makes
their extrapolation for KLE less accurate than in the present results (see Erturk &
Corke 2000).

The two 20 : 1 ellipses have the same nose radius and therefore are expected to
have the same value of KLE . This in fact was the case, within the accuracy of the
extrapolation, as seen in figure 10. In figure 9, the maximum value of KI is slightly
larger for the regular ellipse than for the MSE. The reason for this is the slight
differences in the pressure gradient in these two cases. As a result, even though the
instability amplitude started at the same level, it decayed faster for the MSE giving
a lower value at Branch I. The 40 : 1 MSE had the highest amplitude at the leading
edge, but it also had the smallest adverse pressure gradient of the three cases. As a
result, its decay rate was even faster than the others which accounts, in part, for the
lowest values of KI .

The origin of the oscillation, and the period of the receptivity can be traced to an
interaction between instability waves which originate at the two sites of receptivity.
This is illustrated in the schematic at the top part of figure 11. The bottom part of
the figure corresponds to the Branch I receptivity coefficients for the 40 : 1 MSE. As
shown, instability waves convect downstream from the leading edge and junction to
the measurement location at Branch I. At a given frequency, the wavelength of the
waves originating at the two sites is the same. We also expect these waves to have
the same initial phase difference with respect to the free-stream acoustic disturbance.
As such, when there is an integer number of wavelengths between the leading edge
and junction, the waves will be in phase and their amplitudes will add. When there
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Figure 8. Streamwise perturbation amplitude distribution in the streamwise direction at a fixed
height above the surface after subtracting the Stokes wave: (a) 20 : 1 MSE, (b) 20 : 1 regular ellipse,
(c) 40 : 1 MSE; RL = 1.00× 106, F = 80.0× 10−6, Rb = 2400.

is an integer plus one-half number of wavelengths between the leading edge and
junction, there will be a 180◦ phase shift between the two waves and the amplitudes
will subtract.

In figure 11, we defined the distance from the leading edge to the junction as
a. From the numerical results for the 40 : 1 MSE, we determined the streamwise
wavelengths of the T-S waves at the frequencies where the local maxima and minima
in the receptivity were found to occur. These are marked at their respective locations
on the plot. There, λ1 and λ3 refer to minima, and λ2 and λ4 refer to maxima. We
then determined the number of wavelengths at these frequencies which correspond to
a. The result supports the linear superposition model, namely

a = 2.5λ1 = 3.0λ2 = 3.5λ3 = 4.0λ4. (21)

In this light, we next consider the 20 : 1 ellipses, for which the Branch I receptivity
coefficients as a function of frequency have been re-plotted in figure 12. We first focus
on the MSE. This case has a high, well-defined maximum. At this point the T-S
wavelength λ3 was found to be 0.0240. Putting this in terms of the distance between
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Figure 9. Receptivity coefficients at Branch I as a function of frequency over flat plates with
elliptic leading edges; RL = 1.00× 106, Rb = 2400.

the leading edge and junction, a = 2λ3. This again supports the linear superposition
model to explain the local maximum in the KI at this frequency.

Finally we consider the 20 : 1 regular ellipse. In this case, there are well-defined
local maximum and minimum which appear in the KI distribution. After determining
the wavelengths at these two frequencies, the relation between those and the distance
between the leading edge and junction is found to be 2λ1 = 2.5λ2 = 1.11a. Although
this is not as good as the other two cases, we feel that it still supports the linear
superposition model for the Branch I receptivity variation with frequency. There is
also another explanation which will be considered shortly.

Further evidence of the linear superposition model comes from considering the
difference in the period of oscillation of KI with frequency between the cases. With
these, the distance between the leading edge and junction for the 40 : 1 MSE is twice
that of the 20 : 1 MSE. Therefore we expect twice as many instability wavelengths
corresponding to a for the 40 : 1 MSE. This is evident by comparing the number of
wavelengths corresponding to a at the frequency where the local maximum exists in
the two cases (F ' 96 × 10−6). In this comparison, a = 2λ for the 20 : 1 MSE, and
a = 4λ for the 40 : 1 MSE.

The instability wavelength is λ = Cr/2πf, where the phase speed, Cr , is a function
of frequency. Therefore, λ ∝ f−k , where k is a positive number. Figure 13 shows this
relation, which is independent of the three leading-edge cases. With twice the number
of wavelengths corresponding to a for the 40 : 1 MSE, we expect that the change in
the phase between the waves generated at the leading edge and those generated at
the junction will be twice as fast as that for the 20 : 1 MSE. Therefore the occurrence
of a 0◦ phase difference, producing a local KI maximum, or 180◦ phase difference,
producing a local minimum, will vary twice as fast with frequency for the 40 : 1
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Figure 10. Receptivity coefficients near the leading edge used to extrapolate to leading-edge
coefficient for flat plates with elliptic leading edges; RL = 1.00× 106, F = 54.0× 10−6, Rb = 2400.

compared to the 20 : 1 aspect ratio. This in fact is what we observe by comparing
figures 11 and 12.

The comparison between the 20 : 1 regular ellipse and MSE was intended to isolate
the effect of the junction. To a certain degree it did. These two cases had the same
leading-edge radius, and thereby the same leading-edge receptivity coefficient, as
demonstrated in figure 10. We did however observe a small difference in the pressure
gradient, which might be expected to produce a small difference in the basic flow. This
however had a minimum effect on the instability wavelength at a given frequency, as
was documented in figure 13, where it was not affected by the aspect ratio or shape
of the elliptic leading edge. This also agrees with the experimental results of Saric et
al. (1995).

The most important difference we observe between the two 20 : 1 elliptic leading
edges is that the period of oscillation of KI is shorter for the regular ellipse. This would
suggest that there was a slight phase lag in the waves produced at the junction of the
regular ellipse. Specifically the phase lag would correspond to 0.11λ, or approximately
40◦. Another way to think of this is as an ‘effective’ receptivity site which is located
slightly further downstream of the physical junction. In this case it would be located
at x = 0.0533 compared to 0.050.

Finally, with regard to our original motivation, we make a quantitative comparison
between the present results for the 20 : 1 MSE and the experiments of Saric et
al. (1995), and Saric & White (1998), and the numerical results of Fuciarelli et al.
(1998). This is done in figure 14 which shows the Branch I receptivity coefficient as
a function of frequency. At frequencies which are representative of all the studies,
F × 106 = 82 − 92, the agreement in the receptivity coefficient is reasonably good.
This is summarized in table 2.



Boundary layer receptivity on elliptic leading edges 17

0.04

0.03

0.02

0.01

0

20 40 60 80 100 120

k4 = 0.0240

k3 = 0.0274

k2 = 0.0320

k1 = 0.0384

nk

a

Branch I

2.5k1 = 3.0k2 = 3.5k3 = 4.0k4 = a

KI

F

(×10–6)

Figure 11. Receptivity coefficient at Branch I as a function of frequency over a flat plate with a
40 : 1 MSE leading edge showing the relation between local maxima and minima and the number
of instability wavelengths between the two points of receptivity; RL = 1.00× 106, Rb = 2400.

Fuciarelli et al. Saric et al. Saric & White
Case Present work (1998) (1995) (1998)

F × 106 90 82–86 84 88–92
KI 0.046 0.048 0.036 0.050± 0.005

Table 2. Branch I receptivity coefficients for the 20 : 1 MSE, Rb = 2400.

The present numerical results show a variation of KI with frequency which is
broader than in the experiments. It is interesting however that although the receptivity
values in the experiment fall in narrower bands, the peak levels approximate the
variation with frequency that was found in the present study. As discussed in the
Introduction, physical experiments on acoustic receptivity are extremely difficult to
perform. The amplitudes are small, and there are a number of competing effects
which can control the outcome. Therefore the agreement that is observed in table
2 is more of a testament to the quality of the experiments than to the numerical
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Figure 14. Receptivity coefficient at Branch I as a function of frequency over a flat plate with a
20 : 1 MSE leading edge, and comparison to the experimental results of Saric et al. (1995), Saric &
White (1998), and Fuciarelli et al. (1998); Rb = 2400.

simulation. Clearly these calculations were motivated by the experiments. However,
in this problem, it may be that the only way to get the complete physics is through the
combination of experiments and numerical simulations such as this, and by others.

6. Conclusions
The spatial approach to study the receptivity to acoustic disturbances of boundary

layers previously used for parabolic bodies by Haddad & Corke (1998) was success-
fully adapted to study finite-thickness flat plates with elliptic leading edges. This used
a formulation in general curvilinear coordinates which will allow the study of other
body shapes in the future.

This work was motivated by the experiments of Saric et al. (1995), and Saric &
White (1998), so that their conditions were simulated. This consisted of 40 : 1 and
20 : 1 aspect-ratio modified-super-ellipse leading edges on flat plates at a Reynolds
number based on the plate thickness of Rb = 2400. In order to attempt to separate
out the effect of the leading edge and pressure gradient on the Branch I receptivity,
a 20 : 1 regular ellipse at the same conditions was also studied.

The numerical code was tested with the parabolic bodies used by Haddad & Corke
(1998) and excellent agreement was found in terms of the basic and perturbation flows.
For the elliptic leading edges, we found excellent agreement with the experimental
results of Saric et al. (1995) in terms of the surface pressure coefficient, wall-normal
eigenfunction of the streamwise perturbation velocity, and locations of the upper
branch of the neutral growth curve.

When we focused on the leading edge, we found that the 40 : 1 MSE had the
largest leading-edge receptivity coefficient. This agreed with Haddad & Corke (1998)
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and Hammerton & Kerschen (1992), who showed that the leading-edge receptivity
increases as the nose radius decreases. The value obtained for the 40 : 1 MSE was
also close to that obtained for the parabolic body at the same nose-radius Strouhal
number. As an additional check, we found that the leading-edge receptivity coefficient
for the two 20 : 1 elliptic leading edges (with the same nose radius) agreed as required
by theory.

Although the 40 : 1 MSE had the largest leading-edge receptivity coefficient, its
receptivity coefficient at Branch I was the lowest of the three. This was the result
of having a smaller adverse pressure gradient which increased the decay rate of
the instability mode. The pressure gradients for the two 20 : 1 ellipses were nearly
identical, and the maximum Branch I receptivity coefficients in the two cases were
also nearly the same.

Unlike the parabolic body, the flat plates with elliptic leading edges have two
sites of Branch I receptivity. These are the leading edge, as before, and the junction
between the elliptic leading edge and flat plate. The junction was found to be active
in all three cases. This lead to a periodic increase and decrease in the Branch I
receptivity coefficient with acoustic excitation frequency. This behaviour was traced
to the linear addition and subtraction of waves which originated from the two
receptivity sites. Local receptivity maxima occurred at frequencies which gave an
integer number of wavelengths (0◦ phase shift) between the leading edge and joint.
Local minima occurred when an integer number plus one-half wavelengths (180◦
phase shift) occurred between the leading edge and joint. This was also consistent
with the observation that receptivity maxima and minima varied twice as fast with
frequency for the 40 : 1 MSE compared to the 20 : 1 MSE.

The variation of the instability wavelength with frequency was the same for all
three leading edges. This agreed with the experiments of Saric et al. (1995), and the
linear stability calculations of Herbert (1991).

Finally, for the 20 : 1 MSE within a band of frequencies, F×106 = 82−92, very good
quantitative agreement was found for the Branch I receptivity coefficient between the
present results, the experiment of Saric & White (1998), and the numerical results
of Fuciarelli et al. (1998). These were 0.046, 0.050 ± 0.005, and 0.048, respectively.
However, over the full band of frequencies examined in our study (30 6 F×106 6 120)
the coefficient variation with frequency is broader than depicted by the experiment.
Therefore other unknown effects, which are not a part of the numerical simulation,
are in play in the experiments.

The authors have benefited from discussions on this work with Professors William
Saric and Helen Reed. Their interest and help has been very much appreciated.
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